4.8 Article

Extent of Shallow/Deep Trap States beyond the Conduction Band Minimum in Defect-Tolerant CsPbBr3 Perovskite Quantum Dot: Control over the Degree of Charge Carrier Recombination

Journal

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
Volume 11, Issue 5, Pages 1702-1707

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.0c00385

Keywords

-

Funding

  1. CSIR India [01(2848)/16/EMR-II]
  2. IISER Kolkata
  3. DST-INSPIRE

Ask authors/readers for more resources

Perovskite quantum dots (PQDs) are known to be defect-tolerant, possessing a clean band gap with optically inactive benign defect states. However, we show that there exist significant deep trap states beyond the conduction band minimum, although the extent of shallow trap states is observed to be minimal. The extent of deep trap states beyond the conduction band minimum seems to be significant in PQDs; however, the extent is less than that of even optically robust CdSe- and InP-based core/alloy-shell QDs. In-depth analyses based on ultrafast transient absorption and ultrasensitive single-particle spectroscopic investigations decode the underlying degree of charge carrier recombination in CsPbBr3 PQDs, which is quite important for energy applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available