4.6 Article

Biosynthesized silver nanoparticles using Bacillus amyloliquefaciens; Application for cytotoxicity effect on A549 cell line and photocatalytic degradation of p-nitrophenol

Journal

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jphotobiol.2019.111642

Keywords

Bacillus amyloliquefaciens; Silver nanoparticles (AgNPs); 4-Nitrophenol (4-NP); 4-Aminophenol (4-AP); A549 cells; Photocatalytic degradation

Ask authors/readers for more resources

The present study reports the biosynthesis of silver nanoparticles (AgNPs) using Bacillus amyloliquefaciens MSR5. The cellfree supernatant of B. amyloliquefaciens acted as a stabilizing agent for the synthesis of AgNPs. The synthesized AgNPs were characterized using UV-vis spectrophotometer, PXRD, FTIR, SEM-EDX, DLS, and TEM. TEM image showed the spherical shape of the biosynthesized AgNPs and it was found to be 20-40 nm in range. In this study, the AgNPs were prepared by ultrasonic irradiation. The stability of the AgNPs was found to be -33.4 mV using zeta potential. The catalytic 4-nitrophenol (4-NP) degradation by AgNPs was examined under solar irradiation and furthermore, the effects of several degradation parameters were studied. The biosynthesized AgNPs exhibited a strong chemocatalytic action with a comprehensive degradation (98%) of 4-NP to 4-aminophenol (4-AP) using NaBH4 within 15 min. In addition, MTT assay was performed to evaluate the cytotoxicity of the biosynthesized AgNPs (10 - 200 mu g). The results have shown that the AgNPs exhibited significant activity on A549 cells, which was dosedependent. The study elucidates the AgNPs synthesized using cellfree culture supernatant can be used for the elimination of hazardous pollutants from wastewater.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available