4.6 Article

Alpinia nigra fruits mediated synthesis of silver nanoparticles and their antimicrobial and photocatalytic activities

Journal

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jphotobiol.2019.111649

Keywords

Silver nanoparticles; Alpinia nigra; Antimicrobial; Klebsiella pneumoniae; Photocatalytic

Funding

  1. University Grants Commission, New Delhi [4992/(NET-JUNE 2012)]

Ask authors/readers for more resources

In the present systematic study, silver nanoparticles have been synthesized using the fruits of Alpinia nigra. Apart from the presence of saponins, glycosides, alkaloids, steroids, the extract of A. nigra fruits are rich in polyphenols. The Total Flavonoid and Phenol Content of A. nigra fruits extract is 718 mgRE/g extract and 74.9 mgGAE/g extract respectively. The formation of the nanoparticles was validated through characterization techniques like UV-Vis spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Energy dispersive X-ray spectroscopy (EDX). The spherical shape of silver nanoparticles is observed in Transmission Electron Microscopy (TEM) images. The average particle size of the silver nanoparticles is 6 nm. The biomolecules of the fruit extract played the dual role of reducing and capping agents which is evident from Fourier Transform Infrared (FTIR) spectrometer and Scanning Electron Microscopy (SEM) image analysis. The A. nigra capped silver nanoparticles exhibited promising antimicrobial activity against gram negative bacteria Klebsiella pneumoniae, gram positive bacteria Staphylococcus aureus and the pathogenic fungus, Candida albicans. Amongst the three pathogens, Klebsiella pneumoniae is the most susceptible to silver nanoparticles. Furthermore, the nanoparticles efficiently catalysed the degradation of the anthropogenic dyes Methyl orange, Rhodamine B and Orange G in the presence of sunlight. The photocatalytic degradation process follows the pseudo-first order kinetics. These results confirm that the silver nanoparticles can be efficiently synthesized via a green route using A. nigra fruits with applications as antimicrobial and catalytic agents.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available