4.6 Article

Synthesis of novel tetrazine based D-π-A organic dyes for photoelectrochemical and photocatalytic hydrogen evolution

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jphotochem.2019.112301

Keywords

Donor-pi-acceptor dyes; Hydrogen evolution; Dye sensitization

Funding

  1. Turkish Academy of Sciences via a TUBA-GEBIP fellowship
  2. UNESCO-Loreal
  3. Scientific and Technological Research Council of Turkey (TUBITAK) [215M309]

Ask authors/readers for more resources

Two novel donor-pi-acceptor (D-pi-A) dyes, called as MK-2 and MK-8, are synthesized. Their structural, optical and electrochemical properties are investigated by NMR, absorption/photoluminescence spectroscopies and cyclic voltammetry techniques, respectively. Photocatalytic and photoelectrochemical hydrogen evolution properties of these D-pi-A dyes are explored by using triethanolamine (TEOA) as a sacrificial electron donor under anaerobic conditions and visible light irradiation with or without co-catalysts (Cu2WS4 and Pt) for the first time. Photoelectrochemical and photocatalytic hydrogen evolution reaction (HER) activities of these dyes are studied by using TiO2 coated FTO electrodes and powdered TiO2 (Degussa P25), respectively. Photoelectrochemical response of MK-2/TiO2 and MK-8/TiO2 are figured out in the order of 180 mu A cm(-1) and 80 A cm(-1). The photocatalytic hydrogen evolution amounts of MK-2/TiO2, MK-2/TiO2/Cu2WS4, MK-2/TiO2/Pt, MK-8/TiO2, MK-8/TiO2/Cu2WS4 and MK-8/TiO2/Pt are turned out to be 565, 920, 1828, 374, 522 and 1260 mu molg(-1) h(-1), respectively. Dye/TiO2 photocatalysts are displayed good stability in the both photochemical HER experiments. The alteration in the HER activities of MK-2 and MK-8 is explained by molecule structures of dyes. The proposed mechanism of photocatalytic hydrogen evolution is clarified by using electrochemical band levels of each constituent.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available