4.4 Article

How accurate is density functional theory in predicting spin density? An insight from the prediction of hyperfine coupling constants

Journal

JOURNAL OF MOLECULAR MODELING
Volume 26, Issue 1, Pages -

Publisher

SPRINGER
DOI: 10.1007/s00894-019-4268-0

Keywords

DFT; DLPNO-CCSD; Hyperfine coupling constant; Semiquinone; Radicals; Spin density

Funding

  1. National Science Centre, Poland (Narodowe Centrum Nauki) [2018/02/X/ST5/01186]
  2. [47]

Ask authors/readers for more resources

Electron paramagnetic resonance (EPR) spectroscopy has been proven to be an important technique for studying paramagnetic systems. Probably, the most accessible EPR parameter and the one that provides a significant amount of information about molecular structure and spin density is the hyperfine coupling constant (HFCC). Hence, accurate quantum-chemical modeling of HFCCs is frequently essential to the adequate interpretation of EPR spectra. It requires the precise spin density, which is the difference between the densities of alpha- and beta-electrons, and thus, its quality is expected to reflect the quality of the total electron density. The question of which approximate exchange-correlation density functional yields sufficiently accurate HFCCs, and thus, the spin density remains open. To assess the performance of well-established density functionals for calculating HFCCs, we used a series of 26 small paramagnetic species and compared the obtained results to the CCSD reference values. The performance of DFT was also tested on EPR-studied o-semiquinone radical interacting with water molecules and Mg2+ cation. The HFCCs were additionally calculated by the DLPNO-CCSD method, and this wave function-based technique was found superior to all functionals we tested. Although some functionals were found, on average, to be fairly efficient, we found that the most accurate functional is system-dependent, and therefore, the DLPNO-CCSD method should be preferred for theoretical investigations of the HFCCs and spin density.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available