4.5 Article Proceedings Paper

Tuning the magnetocrystalline anisotropy and spin dynamics in CoxZn1-xFe2O4 (0 <= x <= 1) nanoferrites

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.jmmm.2019.165737

Keywords

-

Funding

  1. Council of Scientific & Industrial Research (CSIR), India

Ask authors/readers for more resources

The present work investigates the static and dynamic magnetization behaviour of Co-Zn nanoferrites and optimizes the magnetocrystalline anisotropy and spin relaxation time. The CoxZn1-xFe2O4 (0 <= x <= 1) magnetic nanoparticles are synthesized by pH-controlled co-precipitation method. The Le Bail structural refinement of X-ray diffraction patterns confirms the single phase formation with negligible synthesis dependent site inversion. The room temperature static dc magnetization study shows a continuous transition from hard ferrimagnetic CoFe(2)O(4 )to soft and weakly magnetic ZnFe2O4, which has been successfully explained with Yafet-Kittel model. Furthermore, approach-to-saturation analysis gives effective magnetocrystalline anisotropy of 1.45 x 10(4) J/m(3) and lowest anisotropy field of 1.3 kOe for x = 0.4. Next, the dynamic magnetization is studied with Electron Spin Resonance spectroscopy. The lineshape analysis gives highest g-value of 3.88 and lowest spin-relaxation time (T-2) of 4.86 x 10(-12)s for x = 0.4, which is in agreement with static magnetization study. The optimized magnetocrystalline anisotropy and lowest spin-relaxation time for Zn0.4Co0.6Fe2O4 make it a good candidate for use in different biomedical applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available