4.7 Article

Halloysite nanoclay supported adsorptive removal of oxytetracycline antibiotic from aqueous media

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 384, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2019.121301

Keywords

Emerging contaminants; Nanomaterials; Pharmaceuticals; Adsorption; Water pollution

Ask authors/readers for more resources

Halloysite nanoclay was utilized to retain aqueous oxytetracycline (OTC) which is extensively used in the veterinary industry. The micro-structure and functionality of the nanoclay were characterized through spectroscopic techniques before and after adsorption. The OTC removal experiments were performed at different pH conditions (pH 3.0-9.0), ionic strengths (0.001, 0.01, 0.1 M NaNO3) and contact time (up to 32 h) at an initial 25 mg/L OTC concentration with 1.0 g/L halloysite. Oxytetracycline adsorption was pH dependent, and the best pH was observed in the range of pH 3.5-5.5 at a 0.001 M ionic strength. At pH 3.5, the maximum OTC adsorption amount was 21 mg/g which translated to 68% removal of the initial OTC loading. Positively charged inner lumen and negatively charged outer lumen of the tubular halloysite structure led to form inner-sphere complexes with the anionic and cationic forms of OTC, respectively. A rapid adsorption of OTC was observed in the kinetic study where 62% OTC was adsorbed in 90 min.. Pseudo-second order equation obeyed by the kinetic data indicated that the adsorption was governed by chemisorption, whereas Hill isotherm equation was the most fitted with a maximum adsorption capacity of 52.4 mg/g indicating a cooperative adsorption phenomenon.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available