4.7 Article

Excellent adsorptive performance of a new nanocomposite for removal of toxic Pb(II) from aqueous environment: Adsorption mechanism and modeling analysis

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 389, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2019.121896

Keywords

Nanocomposite; Multifunctional; Adsorption; Toxic lead Pb(II); Mechanism

Funding

  1. Research and Development (R&D) Program (Research Pooling Initiative), Ministry of Education, Riyadh, Saudi Arabia, (RPI-KSU)

Ask authors/readers for more resources

Herein, a novel nanocomposite (Fe3O4@TATS@ATA) was prepared and used for adsorptive removal of Pb(II) ions from aqueous environment. The magnetic nanocomposite (Fe3O4@TATS@ATA) was characterized using FTIR, TEM, SEM, EDX, element mapping analysis (EMA), TGA analysis, XRD patterns, VSM, BET analysis, XPS spectrum, and zeta potential. The FTIR study confirmed the modification of Fe3O4 nanoparticles with triaminetriethoxysilane and 2-aminoterephthalic acid while XPS analysis (with peaks at 283.6, 285.1, 286.3, 284.5.0, 288.4 eV) displayed the presence of C-Si, C-N, O=C-NH, C-C/C=C and O=C-O functional groups, respectively on Fe3O4@TATS@ATA. The BET surface area, average pore size, pore volume and magnetization saturation for Fe3O4@TATS@ATA were found to be 114 m(2)/g, 6.4 nm, 0.054 cm(-3)/g, and 22 emu/g, respectively. The adsorption isotherm data showed that Pb(II) adsorption onto Fe3O4@TATS@ATA fitted to Langmuir and Dubinin-Raduskevich isotherm model due to better R-2 value which was greater than 0.9 and q(m) of Pb(II) was 205.2 mg/g at pH 5.7 in 150 min. Adsorption kinetics data displayed that Pb(II) adsorption onto Fe3O4@TATS@ATA was fitted to the pseudo-second-order and Elovich kinetic models. Thermodynamic outcomes exhibited the exothermic and spontaneous nature of adsorption. Results showed that Fe3O4@TATS@ATA nanocomposite was promising material for efficient removal of toxic Pb(II) from aqueous environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available