4.5 Article

Photoperiod modulates the gut microbiome and aggressive behavior in Siberian hamsters

Journal

JOURNAL OF EXPERIMENTAL BIOLOGY
Volume 223, Issue 3, Pages -

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jeb.212548

Keywords

Aggression; Dehydroepiandrosterone; Gut-brain axis; Microbiota; Day length; Seasonality

Categories

Funding

  1. National Science Foundation [IOS-1656414]
  2. National Institutes of Health (NIH) [MH109942]
  3. NIH Training grant [T32HD049336]
  4. Hutton Honors College Research Grant
  5. Hutton Honors College Research Partnership Grant
  6. Indiana University

Ask authors/readers for more resources

Seasonally breeding animals undergo shifts in physiology and behavior in response to changes in photoperiod (day length). Interestingly, some species, such as Siberian hamsters (Phodopus sungorus), are more aggressive during the short-day photoperiods of the non-breeding season, despite gonadal regression. While our previous data suggest that Siberian hamsters employ a 'seasonal switch' from gonadal to adrenal regulation of aggression during shortday photoperiods, there is emerging evidence that the gut microbiome, an environment of symbiotic bacteria within the gastrointestinal tract, may also change seasonally and modulate social behaviors. The goal of this study was to compare seasonal shifts in the gut microbiome, circulating levels of adrenal dehydroepiandrosterone (DHEA) and aggression in male and female Siberian hamsters. Hamsters were housed in either long-day (LD) or short-day (SD) photoperiods for 9 weeks. Fecal samples were collected and behaviors were recorded following 3, 6 and 9 weeks of housing, and circulating DHEA was measured at week 9. SD females that were responsive to changes in photoperiod (SD-R), but not SD-R males, displayed increased aggression following 9 weeks of treatment. SD-R males and females also exhibited distinct changes in the relative abundance of gut bacterial phyla and families, yet showed no change in circulating DHEA. The relative abundance of some bacterial families (e.g. Anaeroplasmataceae in females) was associated with aggression in SD-R but not LD or SD non-responder (SD-NR) hamsters after 9 weeks of treatment. Collectively, this study provides insight into the complex role of the microbiome in regulating social behavior in seasonally breeding species.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available