4.2 Article

Enhanced removal of I- on hierarchically structured layered double hydroxides by in suit growth of Cu/Cu2O

Journal

JOURNAL OF ENVIRONMENTAL SCIENCES
Volume 88, Issue -, Pages 338-348

Publisher

SCIENCE PRESS
DOI: 10.1016/j.jes.2019.09.024

Keywords

Layered double hydroxide; Cu/Cu2O; Iodide adsorption; Hierarchical structure; In suit growth

Funding

  1. National Natural Science Foundation of China [11805101, 11205089]
  2. Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials [KFK1504]
  3. Environmental Protection Research Project of Jiangsu Province [JSZC-D2018-044]

Ask authors/readers for more resources

To further improve the removal ability of layered double hydroxide (LDH) for iodide (I-) anions from wastewater, we prepared hierarchically porous Cu5Mg10Al5-LDH and used as a matrix for in suit growth of Cu/Cu2O on its surface, forming Cu/Cu2O-LDH, which was characterized and applied as an adsorbent. Results displayed high I- saturation uptake capability (137.8 mg/g) of Cu/Cu2O-LDH compared with Cu5Mg10Al5-LDH (26.4 mg/g) even thermal activated LDH (76.1 mg/g). Thermodynamic analysis showed that the reaction between I- anions and Cu/Cu2O-LDH is a spontaneous and exothermic. Uptake kinetics analysis exhibited that adsorption equilibrium can be reached after 265 min. Additionally, the adsorbent showed satisfactory selectivity in the presence of competitive anions (e.g., SO42-), and could achieve good adsorption performance in a wide pH range of 3-8. A cooperative adsorption mechanism was proposed on the basis of the following two aspects: (1) ion exchange between iodide and interlayer anions; (2) the adsorption performance of Cu, Cu(II) and Cu2O for I-. Meanwhile, the difference between the adsorption mechanism of Cu/Cu2O-LDH, Cu5Mg10Al5-LDH and Cu5Mg10Al5-CLDH adsorbents was also elaborated and verified. (C) 2019 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available