4.4 Article Proceedings Paper

Energy Management of Microgrid Considering Renewable Energy Sources and Electric Vehicles Using the Backtracking Search Optimization Algorithm

Publisher

ASME
DOI: 10.1115/1.4046098

Keywords

renewable energy; microgrid; electric vehicle; uncertainty; scheduling; energy conversion/systems; energy storage systems; energy systems analysis; heat energy generation/storage/transfer; hydrogen energy; power (co-) generation

Categories

Ask authors/readers for more resources

Different distributed generation (DG) technologies, active loads, and storage devices create an independent microgrid (MG). Scheduling of an MG is an important issue in renewable energy sources (RESs) based systems. In this paper, MGs include RESs, plug-in hybrid electric vehicles (PHEVs), and electrical energy storage systems. The proposed scheduling framework utilizes the Monte Carlo simulation (MCS) to characterize the uncertain parameters of PHEVs and RESs. Three different charging strategies are investigated for modeling the impact of different behaviors of PHEVs in MGs. These schemes are smart, controlled, and uncontrolled charging. Due to the nonlinear feature of the suggested optimization problem, it needs an efficient optimization tool to tackle the problem appropriately. So, this paper uses the backtracking search optimization (BSO) algorithm for the short-term scheduling of an MG. The proper performance of the offered scheme is investigated in two scenarios with different time horizons. The BSO algorithm and other optimization algorithms are used for comparing the results to verify the presented method in solving the energy management problem of the MGs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available