4.6 Article

Inhibition of Histone Deacetylation by MS-275 Alleviates Colitis by Activating the Vitamin D Receptor

Journal

JOURNAL OF CROHNS & COLITIS
Volume 14, Issue 8, Pages 1103-1118

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/ecco-jcc/jjaa016

Keywords

Colitis; histone H3 acetylation; vitamin D receptor; MS-275

Funding

  1. National Key Research and Development Program of China [2017YFC0908901]
  2. National Natural Science Foundation of China [81700485]

Ask authors/readers for more resources

Background: Ulcerative colitis [UC] is a common chronic inflammatory bowel disease without curative treatment. Methods: We conducted gene set enrichment analysis to explore potential therapeutic agents for UC. Human colon tissue samples were collected to test H3 acetylation in UC. Both in vivo and in vitro colitis models were constructed to verify the role and mechanism of H3 acetylation modification in UC. Intestine-specific vitamin D receptor [VDR](-/-) mice and VD [vitamin D]-deficient diet-fed mice were used to explore downstream molecular mechanisms accordingly. Results: According to the Connectivity Map database, MS-275 [class I histone deacetylase inhibitor] was the top-ranked agent, indicating the potential importance of histone acetylation in the pathogenesis of UC. We then found that histone H3 acetylation was significantly lower in the colon epithelium of UC patients and negatively associated with disease severity. MS-275 treatment inhibited histone H3 deacetylation, subsequently attenuating nuclear factor kappa B [NF-kappa B]-induced inflammation, reducing cellular apoptosis, maintaining epithelial barrier function, and thereby reducing colitis activity in a mouse model of colitis. We also identified VDR as be a downstream effector of MS-275. The curative effect of MS-275 on colitis was abolished in VDR-/- mice and in VD-deficient diet-fed mice and VDR directly targeted p65. In UC patients, histone H3 acetylation, VDR and zonulin-1 expression showed similar downregulation patterns and were negatively associated with disease severity. Conclusions: We demonstrate that MS-275 inhibits histone deacetylation and alleviates colitis by ameliorating inflammation, reducing apoptosis, and maintaining intestinal epithelial barrier via VDR, providing new strategies for UC treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available