4.7 Article

Green synthesis of iron nanoparticles using red peanut skin extract: Synthesis mechanism, characterization and effect of conditions on chromium removal

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 558, Issue -, Pages 106-114

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2019.09.106

Keywords

Cr(VI); Green synthesis; Iron nanoparticles; Peanut red pigment

Funding

  1. Fujian Province Innovation and Entrepreneurship Talents, China

Ask authors/readers for more resources

Green synthesis of nanoparticles is becoming increasingly popular as a simple and environmentally friendly method. In this study, iron-based nanoparticles (Fe-NPs) were successfully prepared using a peanut skin extract, where the peanut skin as an agricultural waste product was easy to obtain in large quantities, relatively inexpensive and also environmentally friendly. The average particle size of the produced Fe-NPs changed with their post-synthesis drying conditions. Under vacuum drying at 60 degrees C, the smallest average particle size obtained was 10.6 nm. The synthesized Fe-NPs had a core shell-like structure, in which the core was composed of Fe-0, and the shell was a layered coating composed of biomolecules (e.g. anthocyanins, flavonols, phenolic compounds, epicatechin), iron oxides, Fe coordination compounds and iron-carbon alloys. Thereafter Fe-NPs (2 g L-1) prepared under different drying conditions were evaluated for their ability to remove Cr(VI) from aqueous solutions at pH of 4.7 and 25 degrees C. Fe-NPs obtained under vacuum drying at 60 degrees C performed the best, removing 100% of Cr(VI), from a 10 mg L-1 aqueous solution of Cr(VI) in just one min. Desorption and reuse experiments show that the desorption rate of Cr using 16 M hydrochloric acid and the recycling rate reached 70.2 and 59.9%, respectively. A potential mechanism for Fe NP synthesis involving the formation of intermediate complexes, an electron transfer reaction and adsorption of non-reducing organic macromolecules at the solid-liquid interfaces was proposed. (C) 2019 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available