4.7 Article

Electrocatalytic nitrate reduction using Fe0/Fe3O4 nanoparticles immobilized on nickel foam: Selectivity and energy consumption studies

Journal

JOURNAL OF CLEANER PRODUCTION
Volume 242, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2019.118569

Keywords

Electrocatalytic; Denitrification; Fe3O4 nanoparticles; Zero-valent iron; Nickel foam

Funding

  1. National Institute for Medical Research Development (NIMAD) of the Islamic Republic of Iran [971309]
  2. Tarbiat Modares University, Tehran, Iran

Ask authors/readers for more resources

The main objective of this study is to offer an effective electrocatalytic system with high selectivity to nitrogen and low energy consumption using Ni-Fe-0@Fe3O4 nanocomposite. The Ni-Fe-0@Fe3O4 nanocomposite electrode for electrocatalytic denitrification prepared via an electrodeposition method. Factors effective on nitrate electrocatalytic reduction such as current efficiency, nitrate removal, nitrite and ammonia generation, nitrogen selectivity, and energy consumption were studied using the Ni-Fe-0@Fe3O4 nanocomposite electrode. The Ni-Fe-0@Fe3O4 nanocomposite was characterized by BET, FE-SEM, EDX, and XRD techniques. The proposed electrocatalytic system reached 90.19% nitrate removal efficiency using 5 mA/cm(2) current density within 240 min, pH of 6.2, and 10mM NaCl compared to Ni foam (28.16%) and Ni-Fe-0 (45.95%). The electrocatalytic system exhibited a high selectivity to nitrogen, desirable current efficiency, and low energy consumption, of about 4.42 KWh/n-nitrate-N under the optimum condition. The results showed that the ammonium and nitrite generation decreased in the electrocatalytic process. (c) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available