4.7 Article

Hierarchical Ensembles of Intrinsically Disordered Proteins at Atomic Resolution in Molecular Dynamics Simulations

Journal

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
Volume 16, Issue 1, Pages 725-737

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.9b00809

Keywords

-

Funding

  1. German Research Foundation [CRC902]
  2. Max Planck Society

Ask authors/readers for more resources

Intrinsically disordered proteins (IDPs) constitute a large fraction of the human proteome and are critical in the regulation of cellular processes. A detailed understanding of the conformational dynamics of IDPs could help to elucidate their roles in health and disease. However, the inherent flexibility of IDPs makes structural studies and their interpretation challenging. Molecular dynamics (MD) simulations could address this challenge in principle, but inaccuracies in the simulation models and the need for long simulations have stymied progress. To overcome these limitations, we adopt a hierarchical approach that builds on the flexible-meccano model reported by Bernado et al. (J. Am. Chem. Soc. 2005, 127, 17968-17969). First, we exhaustively sample small IDP fragments in all-atom simulations to capture their local structures. Then, we assemble the fragments into full-length IDPs to explore the stereochemically possible global structures of IDPs. The resulting ensembles of three-dimensional structures of full-length IDPs are highly diverse, much more so than in standard MD simulation. For the paradigmatic IDP a-synuclein, our ensemble captures both the local structure, as probed by nuclear magnetic resonance spectroscopy, and its overall dimension, as obtained from small-angle X-ray scattering in solution. By generating representative and meaningful starting ensembles, we can begin to exploit the massive parallelism afforded by current and future high-performance computing resources for atomic-resolution characterization of IDPs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available