4.7 Article

MCSCF optimization revisited. II. Combined first- and second-order orbital optimization for large molecules

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 152, Issue 7, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.5142241

Keywords

-

Ask authors/readers for more resources

A new orbital optimization for the multiconfiguration self-consistent field method is presented. This method combines a second-order (SO) algorithm for the optimization of the active orbitals with the first-order super configuration interaction (SCI) optimization of the remaining closed-virtual rotations and is denoted as the SO-SCI method. The SO-SCI method significantly improves the convergence as compared to the conventional SCI method. In combination with density fitting, the intermediates from the gradient calculation can be reused to evaluate the two-electron integrals required for the active Hessian without introducing a large computational overhead. The orbitals and CI coefficients are optimized alternately, but the CI-orbital coupling is accounted for by the limited memory Broyden-Fletcher-Goldfarb-Shanno quasi-Newton method. This further improves the speed of convergence. The method is applicable to large molecules. The efficiency and robustness of the presented method is demonstrated in benchmark calculations for 21 aromatic molecules as well as for various transition metal complexes with up to 826 electrons and 5154 basis functions. Published under license by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available