4.7 Article

Exosomes from mesenchymal stem cells overexpressing MIF enhance myocardial repair

Journal

JOURNAL OF CELLULAR PHYSIOLOGY
Volume 235, Issue 11, Pages 8010-8022

Publisher

WILEY
DOI: 10.1002/jcp.29456

Keywords

apoptosis; cardiomyocytes; exosome; macrophage migration inhibitory factor; mesenchymal stem cells; myocardial infarction

Funding

  1. National Natural Science Grant of China [81470456, 81671882, 81700259, 81871113, 81871599]
  2. Qinghai Provincial Natural Science Fund [2017-ZJ-769]
  3. Guangdong Provincial People's Hospital Grant for Talent Introduction [Y012018144]

Ask authors/readers for more resources

Accumulating evidence has shown that mesenchymal stem cell (MSC)-derived exosomes (exo) mediate cardiac repair following myocardial infarction (MI). Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, plays a critical role in regulating cell homeostasis. This study aimed to investigate the cardioprotective effects of exo secreted from bone marrow-MSCs (BM-MSCs) overexpressing MIF in a rat model of MI. MIF plasmid was transducted in BM-MSCs. Exo were isolated from the supernatants of BM-MSCs and MIF-BM-MSCs, respectively. The morphology of mitochondria in neonatal mice cardiomyocytes (NRCMs) was determined by MitoTracker staining. The apoptosis of NRCMs was examined by deoxynucleotidyl transferase-mediated dUTP nick end-labeling. BM-MSC-exo and MIF-BM-MSC-exo were intramuscularly injected into the peri-infarct region in a rat model of MI. The heart function of rats was assessed by echocardiography. The expression of MIF was greatly enhanced in MIF-BM-MSCs compared with BM-MSCs. Both BM-MSC-exo and MIF-BM-MSC-exo expressed CD63 and CD81. NRCMs treated with MIF-BM-MSC-exo exhibited less mitochondrial fragmentation and cell apoptosis under hypoxia/serum deprivation (H/SD) challenge than those treated with BM-MSC-exo via activating adenosine 5 '-monophosphate-activated protein kinase signaling. Moreover, these effects were partially abrogated by Compound C. Injection of BM-MSC-exo or MIF-BM-MSC-exo greatly restored heart function in a rat model of MI. Compared with BM-MSC-exo, injection of MIF-BM-MSC-exo was associated with enhanced heart function, reduced heart remodeling, less cardiomyocyte mitochondrial fragmentation, reactive oxygen species generation, and apoptosis. Our study reveals a new mechanism of MIF-BM-MSC-exo-based therapy for MI and provides a novel strategy for cardiovascular disease treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available