4.7 Article

Exocyst structural changes associated with activation of tethering downstream of Rho/Cdc42 GTPases

Journal

JOURNAL OF CELL BIOLOGY
Volume 219, Issue 2, Pages -

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1083/jcb.201904161

Keywords

-

Categories

Funding

  1. National Institutes of Health [GM054712, T32GM119999, F31MH116576, GM068803, F32GM123704, GM127673, DP2GM110772, S10OD020054, 1S10OD021741, 1S10OD026881-01]
  2. National Science Foundation
  3. Howard Hughes Medical Institute
  4. National Institute of General Medical Sciences [P41-GM103311]

Ask authors/readers for more resources

The exocyst complex plays a critical role in determining both temporal and spatial dynamics of exocytic vesicle tethering and fusion with the plasma membrane. However, the mechanism by which the exocyst functions and how it is regulated remain poorly understood. Here we describe a novel biochemical assay for the examination of exocyst function in vesicle tethering. Importantly, the assay is stimulated by gain-of-function mutations in the Exo70 component of the exocyst, selected for their ability to bypass Rho/Cdc42 activation in vivo. Single-particle electron microscopy and 3D reconstructions of negatively stained exocyst complexes reveal a structural change in the mutant exocyst that exposes a binding site for the v-SNARE. We demonstrate a v-SNARE requirement in our tethering assay and increased v-SNARE binding to exocyst gain-of-function complexes. Together, these data suggest an allosteric mechanism for activation involving a conformational change in one subunit of the complex, which is relayed through the complex to regulate its biochemical activity in vitro, as well as overall function in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available