4.8 Article

Identifying properties of low-loaded CoOX/CeO2 via X-ray absorption spectroscopy for NO reduction by CO

Journal

JOURNAL OF CATALYSIS
Volume 381, Issue -, Pages 355-362

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcat.2019.11.016

Keywords

deNOx; cobalt; ceria; XANES; oxygen vacancies

Funding

  1. Toyota Motor Corporation
  2. Toyota Research Institute of North America
  3. Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource [NSF NNCI-1542205]
  4. MRSEC program at the Materials Research Center [NSF DMR-1121262]
  5. International Institute for Nanotechnology (IIN)
  6. Keck Foundation
  7. State of Illinois, through the IIN
  8. MRSEC program of the National Science Foundation at the Materials Research Center of Northwestern University [DMR-1720139]

Ask authors/readers for more resources

The speciation and catalytic activity of ceria supported transition metal oxides synthesized via incipient wetness impregnation are highly dependent on synthesis parameters such as the choice of metal precursor and the concentration of defects such as oxygen vacancies in the support. Here, cobalt oxide domains were synthesized on cerium oxide nanorods and commercial nanopowder via incipient wetness impregnation of cobalt (II) nitrate hexahydrate, cobalt (II) acetate, cobalt (III) acetylacetonate, and disodium cobalt (II) ethylenediaminetetraacetic acid at surface densities below monolayer coverage. Their reactivity was tested in the catalytic reduction of NO by CO. The steady-state deNOx activity at 250 degrees C of the catalyst prepared with cobalt (III) acetylacetonate and ceria nanorods was nearly three times greater than that of the control catalyst. From X-ray absorption spectroscopy it was seen that as-deposited cobalt precursors on a nanorod support were more highly coordinated than were cobalt precursors on comparable commercial ceria nanoparticles, possibly indicating anchoring at defects on the nanorods. A relationship was found between catalyst activity and the cobalt oxidation state of the fully calcined catalysts that suggests that deNOx activity is separately dependent on the cobalt oxide distribution and the presence of defects in the support. Overall, here it is shown that the two critical synthesis parameters of ligand choice and defected supports combine additively to improve reactivity of the supported cobalt oxide. (C) 2019 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available