4.5 Article

Hyaluronan-based hydrogels as versatile tumor-like models: Tunable ECM and stiffness with genipin-crosslinking

Journal

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
Volume 108, Issue 5, Pages 1256-1268

Publisher

WILEY
DOI: 10.1002/jbm.a.36899

Keywords

3D tumor model; collagen type III and type IV; genipin; hyaluronan; hydrogels

Funding

  1. association Vie et Espoir
  2. Portes de Nomandie (EPN) Agglomeration

Ask authors/readers for more resources

Three-dimensional (3D) biomimetic cell culture platforms offer more realistic microenvironments that cells naturally experience in vivo. We developed a tunable hyaluronan-based hydrogels that could easily be modified to mimic healthy or malignant extracellular matrices (ECMs). For that, we pre-functionalized our hydrogels with an adhesive polypeptide (poly-l-lysine, PLL) or ECM proteins (type III and type IV collagens), naturally present in tumorous tissues, and next, we tuned their stiffness by crosslinking with gradual concentrations of genipin (GnP). Then, we thoroughly characterized our substrates before testing them with glioblastoma and breast cancer cells, and thereafter with endothelial cells. Overall, our hydrogels exhibited (a) increasing stiffness with GnP concentration for every pre-functionalization and (b) efficient enzyme resistance with PLL treatment, and also with type IV collagen but to a lesser extent. While PLL-treated hydrogels were not favorable to the culture of any glioblastoma cell lines, they enhanced the proliferation of breast cancer cells in a stiffness-dependent manner. Contrary to type III collagen, type IV collagen pre-treated hydrogels supported the proliferation of glioblastoma cells. The as-desired HA-based 3D tumor-like models we developed may provide a useful platform for the study of various cancer cells by simply tuning their biochemical composition and their mechanical properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available