4.2 Article

LncRNA MEG3 inhibits the progression of prostate cancer by facilitating H3K27 trimethylation of EN2 through binding to EZH2

Journal

JOURNAL OF BIOCHEMISTRY
Volume 167, Issue 3, Pages 295-301

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jb/mvz097

Keywords

EH2; EZH2; histone methylation; lncRNA MEG3; prostate cancer

Ask authors/readers for more resources

This study aims to study the effects of intra-nuclear lncRNA MEG3 on the progression of prostate cancer and the underlying mechanisms. Expressions of relative molecules were detected by Quantitative real time PCR (qRT-PCR) and western blot. Chromatin immunoprecipitation and RNA immunoprecipitation (RIP) assays were used to evaluate the interaction between intra-nuclear MEG3, histone methyltransferase EZH2 and Engrailed-2 (EN2). The impacts of MEG3 on the viability, proliferation and invasion of prostate cancer cells (PC3) were evaluated by methyl thiazolyl tetrazolium, colony formation and transwell assays, respectively. PC3 cells were transfected with MEG3 and transplanted into nude mice to analyse the effect of MEG3 on tumourigenesis of PC3 cells in vivo. EN2 expression was inversely proportional to MEG3 in the prostate cancer tissues and PC3 cells. RIP results showed that intra-nuclear MEG3 could bind to EZH2. Knockdown of MEG3 and/or EZH2 up-regulated EN2 expression and reduced the recruitment of EZH2 and H3K27me3 to EN2, while over-expressed MEG3 caused opposite effects. MEG3 over-expression suppressed cell viability, colony formation, cell invasion and migration of PC3 cells in vitro and inhibited tumourigenesis of PC3 cells in vivo, while EN2 overexpression diminished the effects. These findings indicated that MEG3 facilitated H3K27 trimethylation of EN2 via binding to EZH2, thus suppressed the development of prostate cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available