4.7 Article

Synthesis of ZIF/CNT nanonecklaces and their derived cobalt nanoparticles/N-doped carbon catalysts for oxygen reduction reaction

Journal

JOURNAL OF ALLOYS AND COMPOUNDS
Volume 816, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2019.152684

Keywords

Carbon nanotube; Metal-organic framework; Catalyst; Oxygen reduction reaction; Carbon nanomaterials

Funding

  1. National Natural Science Foundation of China [21805085, 1701130, 51702378]
  2. Natural Science Foundation of Henan Province of China [162300410193]
  3. Key Research Project of the Education Department of Henan Province of China [17A430022]

Ask authors/readers for more resources

Development of high-performance electrocatalyst for oxygen reduction reaction is imperative to address the issues of energy and environment. Zeolitic imidazolate frameworks (ZIFs)/carbon nanotubes (CNTs) composites have been regarded as a promising precursor to fabricate efficient catalysts. However, it is challenging to synthesize ZIF/CNT composites with unique structure and controllable compositions. Herein, a CNT-directing assembly strategy is developed to synthesize ZIF/CNT nanonecklaces with unique structure and tunable Zn/Co ratios. The oxidized CNTs are employed as a structure-directing agent to prepare one-dimensional nanonecklaces. The ratios of Co/Zn in the ZIF can be adjusted from 0 to 8:2 by simply changing the amount of metal precursors. After carbonization and acid leaching, Co nanoparticles are embedded in the graphitization carbon matrix. Zn species are removed completely and produce plenty of nanopores in the carbon framework. Such ZIF/CNT nanonecklaces derived carbon composites are further used as a catalyst for oxygen reduction reaction, which show high onset potential (0.92 V) and high limiting current density (5.31 mA cm(-2) at 0.30 V). This work provides a new synthesis strategy for the fabrication metal/carbon composited catalysts. (C) 2019 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available