4.7 Article

Co0.85Se@C/Ti3C2Tx MXene hybrids as anode materials for lithium-ion batteries

Journal

JOURNAL OF ALLOYS AND COMPOUNDS
Volume 816, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2019.152566

Keywords

Lithium-ion batteries; Anode material; Co0.85Se; Ti(3)C(2)T(x)MXene; Volumetric capacity

Funding

  1. National Natural Science Foundation of China [NSFC21576158, 21576159, 61604089]
  2. Natural Science Foundation of Shandong Province [ZR2017JL014, ZR2016AQ14]
  3. Taishan Scholar Foundation [tsqn201812063]

Ask authors/readers for more resources

The volumetric capacity plays a critical role in lithium-ion batteries (LIBs) on account of the restrictive electrode material. Herein we report a novel electrode material of Co0.85Se@C/Ti3C2Tx MXene hybrids (CSTC5) with high volumetric capacities are prepared by ultrasonication of Ti3C2Tx MXene and Co0.85Se@C nanoparticles. These samples are systematically characterized by X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive spectroscopy. The electrochemical performance of these samples as anode materials for LIBs are also studied. Owing to the opened two-dimensional structure, good electrochemical property, and weak Li+ diffusion resistance, these materials exhibit good electrochemical properties. The CSTC3 sample delivers the maximum reversible capacity, up to 700 mA h g(-1) at 0.1 A g(-1), corresponding to a very high volumetric capacity of 2044 mA h cm(-3) due to its high compact density. This hybrid is considered to be a promising anode material in small-size wearable or portable electronic devices. (C) 2019 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available