4.4 Article

Asparagine reduces the mRNA expression of muscle atrophy markers via regulating protein kinase B (Akt), AMP-activated protein kinase α, toll-like receptor 4 and nucleotide-binding oligomerisation domain protein signalling in weaning piglets after lipopolysaccharide challenge

Journal

BRITISH JOURNAL OF NUTRITION
Volume 116, Issue 7, Pages 1188-1198

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S000711451600297X

Keywords

Asparagine; Lipopolysaccharides; Muscle atrophy; Pro-inflammatory cytokines

Funding

  1. National Natural Science Foundation of China [31422053, 31372318]
  2. Project of the Hubei Provincial Department of Education [T201508]

Ask authors/readers for more resources

Pro-inflammatory cytokines are critical in mechanisms of muscle atrophy. In addition, asparagine (Asn) is necessary for protein synthesis in mammalian cells. We hypothesised that Asn could attenuate lipopolysaccharide (LPS)-induced muscle atrophy in a piglet model. Piglets were allotted to four treatments (non-challenged control, LPS-challenged control, LPS + 0.5% Asn and LPS + 1.0% Asn). On day 21, the piglets were injected with LPS or saline. At 4 h post injection, piglet blood and muscle samples were collected. Asn increased protein and RNA content in muscles, and decreased mRNA expression of muscle atrophy F-box (MAFbx) and muscle RING finger 1 (MuRF1). However, Asn had no effect on the protein abundance of MAFbx and MuRF1. In addition, Asn decreased muscle AMP-activated protein kinase (AMPK) a phosphorylation, but increased muscle protein kinase B (Akt) and Forkhead Box O (FOXO) 1 phosphorylation. Moreover, Asn decreased the concentrations of TNF-alpha, cortisol and glucagon in plasma, and TNF-alpha mRNA expression in muscles. Finally, Asn decreased mRNA abundance of muscle toll-like receptor (TLR) 4 and nucleotide-binding oligomerisation domain protein (NOD) signalling-related genes, and regulated their negative regulators. The beneficial effects of Asn on muscle atrophy may be associated with the following: (1) inhibiting muscle protein degradation via activating Akt and inactivating AMPK alpha and FOXO1; and (2) decreasing the expression of muscle pro-inflammatory cytokines via inhibiting TLR4 and NOD signalling pathways by modulation of their negative regulators.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available