4.7 Article

Formation of stable nanoemulsions by ultrasound-assisted two-step emulsification process for topical drug delivery: Effect of oil phase composition and surfactant concentration and loratadine as ripening inhibitor

Journal

INTERNATIONAL JOURNAL OF PHARMACEUTICS
Volume 576, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.ijpharm.2019.118952

Keywords

Nanoemulsion; Phase inversion temperature (PIT) method; Nonionic; Transdermal drug delivery; Ultrasound; Ostwald ripening; Coalescence

Funding

  1. German Research Foundation through the Collaborative Research Center [SFB 840]
  2. Anton Paar Middle East Technical Centre, Dubai, United Arab Emirates

Ask authors/readers for more resources

Nanoemulsions are very interesting systems as they offer capacity to encapsulate both hydrophilic and lipophilic molecules in a single particle, as well as the controlled release of chemical moieties initially entrapped in the internal droplets. In this study, we propose a new two-step modified ultrasound-assisted phase inversion approaches-phase inversion temperature (PIT) and self-emulsification, to prepare stable o/w nanoemulsions from a fully water-dilutable microemulsion template for the transdermal delivery of loratadine (a hydrophobe and as Ostwald ripening inhibitor). Firstly, the primary water-in-oil microemulsion concentrate (w/o) was formed using loratadine in the oil phase (oleic acid or coconut oil) and Tween 80 in the aqueous phase and by adjusting the PIT around 85 degrees C followed by stepwise dilution with water at 25 degrees C to initiate the formation the nanoemulsions (o/w). To assure the long-term stability, a brief application of low frequency ultrasound was employed. Combining the two low energy methods resulted in nanoemulsions prepared by mixing constant surfactant/oil ratios above the PIT with varying water volume fraction (self-emulsification) during the PIT by stepwise dilution. The kinetic stability was evaluated by measuring the droplet size with time by dynamic light scattering (DLS). The droplet size ranged 15-43 nm and did not exceed 100 nm over the period of 6 months indicating the system had high kinetic stability. Cryo-TEM showed that the nanoemulsions droplets were monodispersed and approaching micellar structure and scale. All nanoemulsions had loratadine crystals formed within 20 days after preparation, which tended to sediment during storage. Nanoemulsions improved the in vitro permeation of loratadine through porcine skin up to 20 times compared to the saturated solution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available