4.7 Article

Protein Expression Profile in Rat Silicosis Model Reveals Upregulation of PTPN2 and Its Inhibitory Effect on Epithelial-Mesenchymal Transition by Dephosphorylation of STAT3

Journal

Publisher

MDPI
DOI: 10.3390/ijms21041189

Keywords

proteomics; biomarker; silicosis; PTPN2; EMT; STAT3

Funding

  1. precision medicine projects under the national key research and development program of China [2016YFC0900605]
  2. Hebei Medical Science Research Foundation [20190108]
  3. Science and Technology Foundation of Tangshan [18130206a]
  4. Postgraduate Innovation Foundation of North China University of Science and Technology [2017B20]
  5. Programs Foundation of North China University of Science and Technology [GP201303, Z201135]

Ask authors/readers for more resources

Silicosis is a chronic occupational lung disease caused by long-term inhalation of crystalline silica particulates. We created a rat model that closely approximates the exposure and development of silicosis in humans. Isobaric tags for relative and absolute quantitation (iTRAQ) technologies we used to identify proteins differentially expressed in activated rat lung tissue. We constructed three lentiviral knockdown vectors and an overexpression vector for the protein tyrosine phosphatase non-receptor type 2 (PTPN2) gene to achieve stable long-term expression. A total of 471 proteins were differentially expressed in the silicosis group compared with controls. Twenty upregulated, and eight downregulated proteins exhibited a >= 1.5-fold change relative to controls. We next found that the PTPN2, Factor B, and VRK1 concentrations in silicotic rats silicosis and SiO2-stimulated MLE-12 cells were significantly higher than control groups. More importantly, we found that overexpression of PTPN2 simultaneously decreased the expression of phospho-signal transducer and activator of transcription 3 (p-STAT3) and Vimentin, while increasing E-cadherin expression. The opposite pattern was observed for PTPN2-gene silencing. We identified three proteins with substantially enhanced expression in silicosis. Our study also showed that PTPN2 can inhibit epithelial-mesenchymal transition by dephosphorylating STAT3 in silicosis fibrosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available