4.7 Review

Cell-to-Cell Communication in Learning and Memory: From Neuro- and Glio-Transmission to Information Exchange Mediated by Extracellular Vesicles

Journal

Publisher

MDPI
DOI: 10.3390/ijms21010266

Keywords

extracellular vesicles; learning; memory; synaptic plasticity; tripartite synapsis; tetrapartite synapse; wiring transmission; volume transmission; glial cells; synaptic plasticity

Funding

  1. Universita degli Studi di Palermo (University of Palermo), Palermo, Italy

Ask authors/readers for more resources

Most aspects of nervous system development and function rely on the continuous crosstalk between neurons and the variegated universe of non-neuronal cells surrounding them. The most extraordinary property of this cellular community is its ability to undergo adaptive modifications in response to environmental cues originating from inside or outside the body. Such ability, known as neuronal plasticity, allows long-lasting modifications of the strength, composition and efficacy of the connections between neurons, which constitutes the biochemical base for learning and memory. Nerve cells communicate with each other through both wiring (synaptic) and volume transmission of signals. It is by now clear that glial cells, and in particular astrocytes, also play critical roles in both modes by releasing different kinds of molecules (e.g., D-serine secreted by astrocytes). On the other hand, neurons produce factors that can regulate the activity of glial cells, including their ability to release regulatory molecules. In the last fifteen years it has been demonstrated that both neurons and glial cells release extracellular vesicles (EVs) of different kinds, both in physiologic and pathological conditions. Here we discuss the possible involvement of EVs in the events underlying learning and memory, in both physiologic and pathological conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available