4.7 Article

Study of spray collapse phenomenon at flash boiling conditions using simultaneous front and side view imaging

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2019.118824

Keywords

Flash boiling; Spray collapse; Plume interaction; Gasoline direct injection (GDI) engine; Front, side view comparison

Funding

  1. Saudi Aramco under the FUELCOM II program
  2. King Abdullah University of Science and Technology

Ask authors/readers for more resources

Flash boiling has become a topic of interest to researchers due to its potential of achieving good fuel atomization and negative influence on GDI engine emissions when spray collapses and spray-wall impingement exists. Under flash boiling conditions, the accompanying spray collapse phenomenon and plume interaction are not clearly elucidated. Simultaneous side view diffused back illumination (DBI) and front view Mie-scattering were implemented in this work to capture transient plume to plume interaction of iso-octane fuel spray from a 10 hole gasoline direct injection (GDI) injector at flash boiling conditions. Fuel temperature and ambient gas pressure were varied in a wide range to cover collapse, transitional and non-flashing regimes. Two new criteria named 'spray collapse percentage', defined based on the front view Mie-scattering technique and 'optical thickness' based on the side view DBI technique, were developed for classification of different spray regimes. These two criteria distinguish the collapsing and transitional regimes well from the non-collapsing regime compared to other criteria used in the literature. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available