4.5 Article

Support vector machine based prediction of photovoltaic module and power station parameters

Journal

INTERNATIONAL JOURNAL OF GREEN ENERGY
Volume 17, Issue 3, Pages 219-232

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/15435075.2020.1722131

Keywords

Photovoltaic system; power Prediction; seasonal Classification; support Vector Machine; support Vector Regression

Funding

  1. Chinese Academy of Sciences
  2. the World Academy of Sciences

Ask authors/readers for more resources

The uncertainty in the output power of the photovoltaic (PV) power generation station due to variation in meteorological parameters is of serious concern. An accurate output power prediction of a PV system helps in better design and planning. The present study is carried out for the prediction of output power of PV generating station by using Support Vector Machines. Two cases are considered in the present study for prediction. Case-I deals with the prediction of PV module parameters such as V-oc, I-sh, R-s, R-sh, I-max, V-max, P-max, and case-II deals with the prediction of power generation parameters such as P-DC,P- P-AC, and system efficiency. Historical data of PV power station with an installed capacity of 10 MW and weather information are used as input to develop four different seasons-based SVM models for all parameters. The performance results of the models are presented in terms of Mean Relative Error (MRE) and Root Mean Square Error (RMSE). Additionally, the performance results obtained with polynomial and Radial Based Function kernel are also compared to show that which kernel has better prediction accuracy, and practicability. The result shows that the minimum average RMSE and MRE for case-I with Radial Based Function kernel are 0.034%, 0.055%, 0.002%, 1.726%, 0.044%, 0.047%, 2.342%, and 0.005%, 0.014%, 0.079%, 0.885%, 0.005%, 0.007%, 0.013%, and for case-II with poly kernel are 0.014%, 0.016%, 0.149% and 0.011%, 0.0175, 1.03%, respectively. The present study will be helpful to provide technical guidance to the prediction of the PV power System.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available