4.7 Article Proceedings Paper

Co-torrefaction followed by co-combustion of intermediate waste epoxy resins and woody biomass in the form of mini-pellet

Journal

INTERNATIONAL JOURNAL OF ENERGY RESEARCH
Volume 44, Issue 12, Pages 9317-9332

Publisher

WILEY
DOI: 10.1002/er.4886

Keywords

antagonistic and synergistic effects; Co-Torrefaction; Fir; Mini-pellet; TG-FTIR; waste epoxy resins

Ask authors/readers for more resources

This study aimed to investigate co-torrefaction followed by co-combustion of intermediate waste epoxy resins and fir in the form of mini-pellet to evaluate the potential of industrial wastes as biofuels for alternatives of coals. Co-torrefaction and co-combustion of the materials were analyzed through thermogravimetric analysis (TGA) coupled with Fourier transform infrared (FTIR) spectrometer. The results suggested that most of the torrefaction had a slight influence on the wastes due to their thermal resistance properties. Conversely, fir was markedly affected by torrefaction, and the corresponding volatiles were the chemicals stripped or reacted from its components (hemicellulose, cellulose, and lignin). By introducing an index, both antagonistic and synergistic effects were discovered in the two-stage reaction because new compounds formed during the co-torrefaction and co-combustion processes, as a consequence of catalytic and blocking effects. Overall, co-torrefaction could make the quality of the biofuel from intermediate waste epoxy resins more homogeneous and is a promising route to transform waste epoxy resins into alternative fuels for industrial applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available