4.6 Article

An extended/generalized phase-field finite element method for crack growth with global-local enrichment

Journal

Publisher

WILEY
DOI: 10.1002/nme.6318

Keywords

crack growth; extended; generalized FEM; global-local analysis; gradient damage models; multiscale; phase-fields

Funding

  1. Sandia National Laboratories

Ask authors/readers for more resources

An extended/generalized finite element method (XFEM/GFEM) for simulating quasistatic crack growth based on a phase-field method is presented. The method relies on approximations to solutions associated with two different scales: a global scale, that is, structural and discretized with a coarse mesh, and a local scale encapsulating the fractured region, that is, discretized with a fine mesh. A stable XFEM/GFEM is employed to embed the displacement and damage fields at the global scale. The proposed method accommodates approximation spaces that evolve between load steps, while preserving a fixed background mesh for the structural problem. In addition, a prediction-correction algorithm is employed to facilitate the dynamic evolution of the confined crack regions within a load step. Several numerical examples of benchmark problems in two- and three-dimensional quasistatic fracture are provided to demonstrate the approach.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available