4.7 Article

Asynchronous dual-pipeline deep learning framework for online data stream classification

Journal

INTEGRATED COMPUTER-AIDED ENGINEERING
Volume 27, Issue 2, Pages 101-119

Publisher

IOS PRESS
DOI: 10.3233/ICA-200617

Keywords

Classification; convolutional neural network; data streaming; deep learning; evaluation; online learning

Funding

  1. Spanish Ministry of Economy and Competitiveness [TIN2017-88209-C2-2-R]

Ask authors/readers for more resources

Data streaming classification has become an essential task in many fields where real-time decisions have to be made based on incoming information. Neural networks are a particularly suitable technique for the streaming scenario due to their incremental learning nature. However, the high computation cost of deep architectures limits their applicability to high-velocity streams, hence they have not yet been fully explored in the literature. Therefore, in this work, we aim to evaluate the effectiveness of complex deep neural networks for supervised classification in the streaming context. We propose an asynchronous deep learning framework in which training and testing are performed simultaneously in two different processes. The data stream entering the system is dual fed into both layers in order to concurrently provide quick predictions and update the deep learning model. This separation reduces processing time while obtaining high accuracy on classification. Several time-series datasets from the UCR repository have been simulated as streams to evaluate our proposal, which has been compared to other methods such as Hoeffding trees, drift detectors, and ensemble models. The statistical analysis carried out verifies the improvement in performance achieved with our dual-pipeline deep learning framework, that is also competitive in terms of computation time.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available