4.7 Article

Compensation of Communication Delays in a Cooperative ACC System

Journal

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
Volume 69, Issue 2, Pages 1177-1189

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TVT.2019.2960114

Keywords

Cooperative adaptive cruise control (CACC); Smith predictor; master-slave architecture; wireless communication delay; string stability

Funding

  1. China Scholarship Council [201306170017]

Ask authors/readers for more resources

Cooperative adaptive cruise control (CACC) employs intervehicle wireless communications to safely drive at short intervehicle distances, which improves road throughput. The underlying technical requirement to achieve this benefit is formulated by the notion of string stability, requiring the attenuation of the effects of disturbances in upstream direction. The wireless communication delay, however, significantly compromises string stability. In order to compensate for time delays and thus reduce the minimum string-stable time gap, a Smith predictor can be applied. For application of a Smith predictor, the time delay needs to be in a series connection with the plant to be controlled, which is realized by introducing a master-slave architecture for CACC. As a result, information exchange appears to become bidirectional, while the control scheme still follows the one-vehicle look-ahead strategy. Feasibility of both the master-slave CACC strategy and the Smith predictor is explicitly analyzed. With the proposed control scheme, the minimum string-stable time gap can be significantly decreased, even considering communication delay uncertainty. The results are validated using simulations with a platoon of CACC-equipped vehicles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available