4.7 Article

Improving the RISS/GNSS Land-Vehicles Integrated Navigation System Using Magnetic Azimuth Updates

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TITS.2019.2905871

Keywords

Land vehicles navigation; heading angle sources; integrated navigation systems; GNSS; GPS; INS; magnetometers; EKF

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)

Ask authors/readers for more resources

Navigation of land or self-driving vehicles is essential for safe and accurate travel. The global navigation satellite systems (GNSSs), such as global positioning system (GPS) are the primary sources of navigation information for such purpose. However, high-rise buildings in urban canyons block the GPS satellites signals. Alternatively, inertial navigation system (INS) is typically working as a backup. A reduced inertial sensor system (RISS) is used instead of the full INS to achieve the same purpose in land vehicles navigation with fewer sensors and computations. Unfortunately, the RISS solution drifts over time, but this can be mitigated when integrated with the GPS. However, the integration solution drifts in the case of GPS signal loss (outages). Therefore, the position errors grow especially during extended periods of GPS outages. Azimuth/heading angle is critical to keep the vehicle on the route. In this paper, an azimuth update estimated from a calibrated magnetometer is introduced to improve the accuracy of the overall system. A new approach is proposed for pre-processing the magnetometer data utilizing a discrete-cosine-transform (DCT)-based pre-filtering stage. The obtained azimuth is utilized in updating the RISS system during the whole trajectory and mainly during GPS outage periods. The proposed approach significantly decreases both the azimuth error and the position error growth rate when driving in urban canyons where the GPS signals are blocked. Finally, the proposed system was tested on a real road trajectory data for a metropolitan area. The results demonstrate that the accuracy of the whole system improved, especially during the GPS outage periods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available