4.7 Article

Accurate Empirical Path-Loss Model Based on Particle Swarm Optimization for Wireless Sensor Networks in Smart Agriculture

Journal

IEEE SENSORS JOURNAL
Volume 20, Issue 1, Pages 552-561

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSEN.2019.2940186

Keywords

Correlation coefficient; exponential equation; farm field; path-loss model; polynomial equation; PSO; WSN; ZigBee

Funding

  1. Al-Rafidain University College

Ask authors/readers for more resources

Wirelesssensor networks (WSNs) have received significant attention in the last few years in the agriculture field. Among the major challenges for sensor nodes' deployment in agriculture is the path loss in the presence of dense grass or the height of trees. This results in degradation of communication link quality due to absorption, scattering, and attenuation through the crop's foliage or trees. In this study, two new path-loss models were formulated based on the MATLAB curve-fitting tool for ZigBee WSN in a farm field. The path loss between the router node (mounted on a drone) and the coordinator node was modeled and derived based on the received signal strength indicator (RSSI) measurements with the particle swarm optimization (PSO) algorithm in the farm field. Two path-loss models were formulated based on exponential (EXP) and polynomial (POLY) functions. Both functions were combined with PSO, namely, the hybrid EXP-PSO and POLY-PSO algorithms, to find the optimal coefficients of functions that would result in accurate path-loss models. The results show that the hybrid EXP-PSO and POLY-PSO models noticeablyimprovedthe coefficient of determination (R2) of the regression line, with themean absolute error (MAE) found to be 1.6 and 2.7 dBm for EXP-PSO and POLY-PSO algorithms. The achieved R2 in this study outperformed the previous state-of-the-art models. An accurate path-loss model is essential for smart agriculture application to determine the behavior of the propagated signals and to deploy the nodes in the WSN in a position that ensures data communication without unnecessary packets' loss between nodes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available