4.5 Article

Symbiont-mediated protection varies with wasp genotype in the Drosophila melanogaster-Spiroplasma interaction

Journal

HEREDITY
Volume 124, Issue 4, Pages 592-602

Publisher

SPRINGERNATURE
DOI: 10.1038/s41437-019-0291-2

Keywords

-

Funding

  1. NERC [NE/L002450/1]

Ask authors/readers for more resources

The ability of an insect to survive attack by natural enemies can be modulated by the presence of defensive symbionts. Study of aphid-symbiont-enemy interactions has indicated that protection may depend on the interplay of symbiont, host and attacking parasite genotypes. However, the importance of these interactions is poorly understood outside of this model system. Here, we study interactions within a Drosophila model system, in which Spiroplasma protect their host against parasitoid wasps and nematodes. We examine whether the strength of protection conferred by Spiroplasma to its host, Drosophila melanogaster varies with strain of attacking Leptopilina heterotoma wasp. We perform this analysis in the presence and absence of ethanol, an environmental factor that also impacts the outcome of parasitism. We observed that Spiroplasma killed all strains of wasp. However, the protection produced by Spiroplasma following wasp attack depended on wasp strain. A composite measure of protection, including both the chance of the fly surviving attack and the relative fecundity/fertility of the survivors, varied from a Spiroplasma-Drosophila-wasp tripartite interaction depend upon the genetic diversity within the attacking wasp population, and that prediction of symbiont dynamics in natural systems will thus require analysis across natural enemy genotypes and levels of environmental ethanol.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available