4.7 Article

Early central American forearc follows the subduction initiation rule

Journal

GONDWANA RESEARCH
Volume 79, Issue -, Pages 283-300

Publisher

ELSEVIER
DOI: 10.1016/j.gr.2019.10.002

Keywords

Central American forearc; Subduction initiation; Subduction initiation rule; Forearc; Volcanic arc; Ophiolite

Funding

  1. NSF [EAR-0824299]
  2. National Geographic
  3. Smithsonian Institution
  4. Ricardo Perez S.A.

Ask authors/readers for more resources

The subduction initiation rule (SIR) (Whattam and Stern, 2011) advocates that proto-arc and forearc complexes preserved in ophiolites and forearcs follow a predictable chemotemporal and/or chemo-stratigraphic vertical progression. This chemotemporal evolution is defined by a progression from bottom to top, from less to more depleted and slab-metasomatized sources. This progression has been recently documented for other igneous suites associated with subduction initiation. The Sona-Azuero forearc complex of southern Panama represents the earliest magmatic arc activity at the Central American Volcanic Arc system. Comparison of new and existing geochemical data for the circa 82-40 Ma Sona-Azuero Proto-Arc/Arc, its underlying 89-85 Ma oceanic plateau of SW Panama and the 72-69 Ma Golfito Proto-Arc of southern Costa Rica with the 70-39 Ma Chagres-Bayano Arc of eastern Panama exhibits a chemotemporal progression as described above and which follows the SIR. Sona-Azuero lavas are predominantly MORB-like, whereas those of the younger Chagres-Bayano complex are mostly VAB-like; lavas of the Golfito Proto-Arc typically show characteristics intermediate to that of the Sona-Azuero and Chagres-Bayano proto-arc/arc complexes. On the basis of isotope evidence as shown in other studies, lava types of all three complexes are clearly derived from a source contaminated by the Caribbean Large Igneous Province plume; we term these plume-contaminated forearc basalts and volcanic arc basalts, respectively. Apart from a plume-induced subduction initiation origin for the Panamanian forearc, these insights suggest otherwise similar petrogenetic origins and tectonic setting to lavas comprising earliest-formed forearc crust, and most ophiolites, which follow the SIR. (c) 2019 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available