4.7 Article

Sediment dynamics across gravel-sand transitions: Implications for river stability and floodplain recycling

Journal

GEOLOGY
Volume 48, Issue 5, Pages 468-472

Publisher

GEOLOGICAL SOC AMER, INC
DOI: 10.1130/G46909.1

Keywords

-

Categories

Funding

  1. Natural Environment Research Council (NERC) Global Challenges Research Fund (GCRF) Building Resilience grant [NE/P015905/1]
  2. Engineering and Physical Sciences Research Council GCRF Institutional grant [EP/P510944/1]
  3. Natural Sciences and Engineering Research Council of Canada (NSERC)
  4. NERC [NE/P015905/1] Funding Source: UKRI

Ask authors/readers for more resources

The gravel-sand transition (GST) is commonly observed along rivers. It is characterized by an abrupt reduction in median grain size, from gravel- to sand-size sediment, and by a shift in sand transport mode from wash load-dominated to suspended bed material load. We documented changes in channel stability, suspended sediment concentration, flux, and grain size across the GST of the Karnali River, Nepal. Upstream of the GST, gravel-bed channels are stable over hundred- to thousand-year time scales. Downstream, floodplain sediment is reworked by lateral bank erosion, particularly during monsoon discharges. Suspended sediment concentration, grain size, and flux reveal counterintuitive increases downstream of the GST. The results demonstrate a dramatic change in channel dynamics across the GST, from relatively fixed, steep gravel-bed rivers with infrequent avulsion to lower-gradient, relatively mobile sand-bed channels. The increase in sediment concentration and near-bed suspended grain size may be caused by enhanced channel mobility, which facilitates exchange between bed and bank material. These results bring new constraints on channel stability at mountain fronts and indicate that temporally and spatially limited sediment flux measurements down-stream of GSTs are more indicative of flow stage and floodplain recycling than of continental-scale sediment flux and denudation rate estimates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available