4.7 Article

Predicting glyphosate sorption across New Zealand pastoral soils using basic soil properties or Vis-NIR spectroscopy

Journal

GEODERMA
Volume 360, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.geoderma.2019.114009

Keywords

-

Categories

Funding

  1. European Union's Horizon 2020 Research and Innovation Project 'PROTINUS', France [645717]
  2. Royal Society of New Zealand
  3. Aarhus University Research Foundation grant [AUFF-E-2016-9-36]

Ask authors/readers for more resources

Glyphosate [N-(phosphonomethyl) glycine] is the active ingredient in Roundup, which is the most used herbicide around the world. It is a non-selective herbicide with carboxyl, amino, and phosphonate functional groups, and it has a strong affinity to the soil mineral fraction. Sorption plays a major role for the fate and transport of glyphosate in the environment. The sorption coefficient (K-d) of glyphosate, and hence its mobility, varies greatly among different soil types. Determining K-d is laborious and requires the use of wet chemistry. In this study, we aimed to estimate K-d using basic soil properties, and visible near-infrared spectroscopy (vis-NIRS). The latter method is fast, requires no chemicals, and several soil properties can be estimated from the same spectrum. The data set included 68 topsoil samples collected across the South Island of New Zealand, with clay and organic carbon (OC) contents ranging from 0.001 to 0.520 kg kg(-1) and 0.021 to 0.217 kg kg(-1), respectively. The K-d was determined with batch equilibration sorption experiments and ranged from 13 to 3810 L kg(-1). The visible near-infrared spectra were obtained from 400 to 2500 nm. Multiple linear regression was used to correlate K-d to oxalate extractable aluminium and phosphorous and pH, which resulted in an R-2 of 0.89 and an RMSE of 259.59 L kg(-2). Further, interval partial least squares regression with ten-fold cross-validation was used to predict K-d by vis-NIBS, and an R-2 of 0.93 and an RMSECV of 207.58 L kg(-1) were obtained. Thus, these results show that both basic soil properties and vis-NIRS can predict the variation in K-d across these samples with high accuracy and hence, that glyphosate sorption to a soil can be determined with vis-NIRS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available