4.7 Article

Scaling spray penetration at supersonic conditions through shockwave analysis

Journal

FUEL
Volume 260, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2019.116308

Keywords

Diesel spray; Shockwave; Penetration; Visualization

Funding

  1. Ministerio de Ciencia, Innovacion y Universidades, of the Spanish Government [RTI2018-099706-B-I00]

Ask authors/readers for more resources

In the current paper, an investigation of the supersonic flow effect on shockwave generation and diesel spray penetration scaling has been performed. For this purpose, spray visualization tests have been carried out in a constant-pressure chamber at room temperature using shadowgraphy technique. Two working gases have been used: nitrogen, with similar thermodynamic characteristics to the engine environment, and sulfur hexafluoride, aimed at producing supersonic conditions at moderate injection pressure values. A total of 60 operating points, including different nozzle geometries, injection pressures and chamber densities have been studied. From the visualization study, two different kinds of shockwaves have been detected: normal or frontal, for moderate spray tip Mach (between 1 and 1.5); and oblique, when the Mach is higher than 1.5. The penetration results show that, for the same injection conditions in terms of injection pressure and chamber density, the spray propagation is equal for SF6 and N-2 when the spray is on subsonic conditions, while penetration is higher for SF6 when supersonic velocity is reached. This behavior has been related to the density gradient appearing across the shockwave. A new methodology to extrapolate supersonic penetration from the well-known subsonic penetration law has been proposed, showing good agreement with the experimental results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available