4.7 Review

Hazard assessment of small-size plastic particles: is the conceptual framework of particle toxicology useful?

Journal

FOOD AND CHEMICAL TOXICOLOGY
Volume 136, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.fct.2019.111106

Keywords

-

Ask authors/readers for more resources

Humans are exposed to plastic particles, but there are no studies on environmental plastics in cell cultures or animals. The toxicological understanding arises from model particles like polystyrene, polyethylene or non-plastic particles like food-grade titanium dioxide. The majority of studies on polystyrene particles show toxicological effects on measures of oxidative stress, inflammation, mitochondrial dysfunction, lysosomal dysfunction and apoptosis. The toxic effects in cell cultures mainly occur at high concentrations. Polyethylene particles seem to generate inflammatory reactions, whereas other toxicological effects have not been assessed. There are very few studies on effects of polystyrene particles in animal models and these have not demonstrated overt indices of toxicity. Studies in animals are the likely way for hazard assessment of micro- or nanoplastics. However, co-culture systems that mimic the complex architecture of mammalian tissues can cost-efficiently determine the hazards of micro- and nanoplastics. Future studies should include low doses of micro- and nanoplastic particles, which are more relevant in the assessment of health risk than the extrapolation of effects from high doses to realistic doses. Based on studies on model particles, environmental exposure to micro- and nanoplastic particles may be a hazard to human health.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available