4.6 Article

The adipokine NimrodB5 regulates peripheral hematopoiesis in Drosophila

Journal

FEBS JOURNAL
Volume 287, Issue 16, Pages 3399-3426

Publisher

WILEY
DOI: 10.1111/febs.15237

Keywords

Drosophila; growth; metabolism; Nimrod; organ prioritization; peripheral hematopoiesis; trade-off

Ask authors/readers for more resources

In animals, growth is regulated by the complex interplay between paracrine and endocrine signals. When food is scarce, tissues compete for nutrients, leading to critical resource allocation and prioritization. Little is known about how the immune system maturation is coordinated with the growth of other tissues. Here, we describe a signaling mechanism that regulates the number of hemocytes (blood cells) according to the nutritional state of the Drosophila larva. Specifically, we found that a secreted protein, NimB5, is produced in the fat body upon nutrient scarcity downstream of metabolic sensors and ecdysone signaling. NimB5 is then secreted and binds to hemocytes to down-regulate their proliferation and adhesion. Blocking this signaling loop results in conditional lethality when larvae are raised on a poor diet, due to excessive hemocyte numbers and insufficient energy storage. Similar regulatory mechanisms shaping the immune system in response to nutrient availability are likely to be widespread in animals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available