4.6 Article

Fusobacterium nucleatum promotes epithelial-mesenchymal transiton through regulation of the lncRNA MIR4435-2HG/miR-296-5p/Akt2/SNAI1 signaling pathway

Journal

FEBS JOURNAL
Volume 287, Issue 18, Pages 4032-4047

Publisher

WILEY
DOI: 10.1111/febs.15233

Keywords

E-cadherin; epithelial-mesenchymal transition; Fusobacterium nucleatum; MIR4435-2HG; SNAIL1

Funding

  1. National Natural Science Foundation of China [81670997]

Ask authors/readers for more resources

Fusobacterium nucleatum, an anaerobic oral opportunistic pathogen associated with periodontitis, has been considered to be associated with the development of oral squamous cell carcinoma (OSCC). However, the initial host molecular alterations induced by F. nucleatum infection which may promote predisposition to malignant transformation through epithelial-mesenchymal transition (EMT) have not yet been clarified. In the present study, we monitored the ability of F. nucleatum to induce EMT-associated features, and our results showed that F. nucleatum infection promoted cell migration in either noncancerous human immortalized oral epithelial cells (HIOECs) or the two OSCC cell lines SCC-9 and HSC-4, but did not accelerate cell proliferation or cell cycle progression. Mesenchymal markers, including N-cadherin, Vimentin, and SNAI1, were upregulated, while E-cadherin was decreased and was observed to translocate to the cytoplasm. Furthermore, FadA adhesin and heat-inactivated F. nucleatum were found to cause a similar effect as the viable bacterial cells. The upregulated lncRNA MIR4435-2HG identified by the high-throughput sequencing was demonstrated to negatively regulate the expression of miR-296-5p, which was downregulated in F. nucleatum-infected HIOECs and SCC-9 cells. The binding of MIR4435-2HG and miR-296-5p was validated via a dual-luciferase reporter assay. Additionally, knockdown of MIR4435-2HG with siRNA leads to a decrease in SNAI1 expression, while miR-296-5p could further negatively and indirectly regulate SNAI1 expression via Akt2. Therefore, our study demonstrated that F. nucleatum infection could trigger EMT via lncRNA MIR4435-2HG/miR-296-5p/Akt2/SNAI1 signaling pathway, and EMT process may be a probable link between F. nucleatum infection and initiation of oral epithelial carcinomas.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available