4.7 Article

REDD1 deficiency protects against nonalcoholic hepatic steatosis induced by high-fat diet

Journal

FASEB JOURNAL
Volume 34, Issue 4, Pages 5046-5060

Publisher

WILEY
DOI: 10.1096/fj.201901799RR

Keywords

autophagy; hepatic steatosis; obesity; REDD1

Funding

  1. INSERM (France)
  2. French Government (National Research Agency, ANR) [ANR-15-CE14-0016-01, ANR-18-CE14-0019-02]
  3. Investments for the Future LABEX SIGNALIFE [ANR-11-LABX-0028-01]
  4. UCAJEDI Investments in the Future project [ANR-15-IDEX-01]
  5. Societe Francophone du Diabete SFD/ Abbott
  6. Universite Cote d'Azur
  7. Region Provence-Alpes-Cote-d'Azur
  8. Conseil General des Alpes Maritimes
  9. Region Sud-ProvenceAlpes-Cote-d'Azur
  10. GIS-IBiSA and Canceropole Provence-Alpes-Cote d'Azur
  11. Agence Nationale de la Recherche (ANR) [ANR-18-CE14-0019, ANR-15-CE14-0016] Funding Source: Agence Nationale de la Recherche (ANR)

Ask authors/readers for more resources

Nonalcoholic fatty liver disease is a chronic liver disease which is associated with obesity and insulin resistance. We investigated the implication of REDD1 (Regulated in development and DNA damage response-1), a stress-induced protein in the development of hepatic steatosis. REDD1 expression was increased in the liver of obese mice and morbidly obese patients, and its expression correlated with hepatic steatosis and insulin resistance in obese patients. REDD1 deficiency protected mice from the development of hepatic steatosis induced by high-fat diet (HFD) without affecting body weight gain and glucose intolerance. This protection was associated with a decrease in the expression of lipogenic genes, SREBP1c, FASN, and SCD-1 in liver of HFD-fed REDD1-KO mice. Healthy mitochondria are crucial for the adequate control of lipid metabolism and failure to remove damaged mitochondria is correlated with liver steatosis. Expression of markers of autophagy and mitophagy, Beclin, LC3-II, Parkin, BNIP3L, was enhanced in liver of HFD-fed REDD1-KO mice. The number of mitochondria showing colocalization between LAMP2 and AIF was increased in liver of HFD-fed REDD1-KO mice. Moreover, mitochondria in liver of REDD1-KO mice were smaller than in WT. These results are correlated with an increase in PGC-1 alpha and CPT-1 expression, involved in fatty acid oxidation. In conclusion, loss of REDD1 protects mice from the development of hepatic steatosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available