4.1 Article

Effects of the natural compound, oxyresveratrol, on the growth of Streptococcus mutans, and on biofilm formation, acid production, and virulence gene expression

Journal

EUROPEAN JOURNAL OF ORAL SCIENCES
Volume 128, Issue 1, Pages 18-26

Publisher

WILEY
DOI: 10.1111/eos.12667

Keywords

dental caries; glucosyltransferase; lactate dehydrogenase

Funding

  1. National Natural Science Foundation of China [NSFC 31800114]
  2. National Undergraduate Innovation and Entrepreneurship Training Program [C2018101771]

Ask authors/readers for more resources

Streptococcus mutans is one of the major pathogens of dental caries. Oxyresveratrol, a natural compound found in plants, exerts inhibitory effects on many bacterial species but its effect on S. mutans is unknown. The objective of this study was to clarify the antibacterial effect of oxyresveratrol on S. mutans, including effects on basic viability, acidogenicity, acidurity, and extracellular polysaccharide synthesis. The expression of nine genes that encode virulence and protective factors in S. mutans was measured by qRT-PCR. Oxyresveratrol showed a dose-dependent inhibitory effect on survival of S. mutans. At 250 mu g ml(-1), oxyresveratrol reduced the S. mutans survival rate, inhibited synthesis of water-insoluble glucans, compromised biofilm formation, and significantly down-regulated the expression of glucosyltransferase-I (gtfB) and glucosyltransferase-SI (gtfC). However, the enzymatic activity of lactate dehydrogenase protein was increased and the expression of lactate dehydrogenase (ldh) and ATP synthase subunit beta (atpD) genes were also up-regulated. Besides, glucosyltransferase S (gtfD) up-regulation indicated that water-soluble glucan synthesis was promoted. The vicR, liaR, and comDE genes, which exert a self-protective function in response to external stress, were also up-regulated. In conclusion, oxyresveratrol inhibited the growth of S. mutans and also reduced biofilm formation, acid production, and synthesis of water-insoluble glucans by this organism. In addition, oxyresveratrol also activated a series of S. mutans self-protection mechanisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available