4.5 Article

Melatonin mitigates hippocampal and cognitive impairments caused by prenatal irradiation

Journal

EUROPEAN JOURNAL OF NEUROSCIENCE
Volume 52, Issue 6, Pages 3575-3594

Publisher

WILEY
DOI: 10.1111/ejn.14687

Keywords

antioxidant; ionizing radiation; Morris water maze; neurogenesis; rats

Categories

Funding

  1. Ministry of Education, Science, Research and Sport of the Slovak Republic [1/0292/12, 2/0159/17]
  2. Operational Program Research and Innovations for project Medical University Scientific Park in Kosice [ITMS2014+313011D103]
  3. European Fund of Regional Progress

Ask authors/readers for more resources

Formation of new neurons and glial cells in the brain is taking place in mammals not only during prenatal embryogenesis but also during adult life. As an enhancer of oxidative stress, ionizing radiation represents a potent inhibitor of neurogenesis and gliogenesis in the brain. It is known that the pineal hormone melatonin is a potent free radical scavenger and counteracts inflammation and apoptosis in brain injuries. The aim of our study was to establish the effects of melatonin on cells in the hippocampus and selected forms of behaviour in prenatally irradiated rats. The male progeny of irradiated (1 Gy of gamma rays; n = 38) and sham-irradiated mothers (n = 19), aged 3 weeks or 2 months, were used in the experiment. Melatonin was administered daily in drinking water (4 mg/kg b. w.) to a subset of animals from each age group. Prenatal irradiation markedly suppressed proliferative activity in the dentate gyrus in both age groups. Melatonin significantly increased the number of proliferative BrdU-positive cells in hilus of young irradiated animals, and the number of mature NeuN-positive neurons in hilus and granular cell layer of the dentate gyrus in these rats and in CA1 region of adult irradiated rats. Moreover, melatonin significantly improved the spatial memory impaired by irradiation, assessed in Morris water maze. A significant correlation between the number of proliferative cells and cognitive performances was found, too. Our study indicates that melatonin may decrease the loss of hippocampal neurons in the CA1 region and improve cognitive abilities after irradiation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available