4.7 Article

A density functional theory/time-dependent density functional theory study of the structure-related photochemical properties of hydroxylated polybrominated diphenyl ethers and methoxylated polybrominated diphenyl ethers and metal ion effects

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 27, Issue 9, Pages 9297-9306

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-019-07538-0

Keywords

Hydroxylated polybrominated diphenyl ether; Methoxylated polybrominated diphenyl ether; Density functional theory; Photodegradation; Photoreactivity; Metal ions

Ask authors/readers for more resources

As the derivatives and structural analogs of polybrominated diphenyl ethers (PBDEs), hydroxylated polybrominated diphenyl ethers (OH-PBDEs) and methoxylated polybrominated diphenyl ethers (MeO-PBDEs) have attracted increasing concern. However, knowledge of the photochemical behaviors of OH-PBDEs and MeO-PBDEs in water is limited. Here, we used density functional theory and time-dependent density functional theory to examine the structure-related photochemical properties of OH-PBDEs and MeO-PBDEs in water and the effects of metal ions as environmental factors. Eight 6-OH-PBDEs with 1-8 bromine substituents and eight 6-MeO-PBDEs with 1-8 bromine substituents were selected for this study. The optimized geometries of the selected congeners and their complexes with metals in the lowest excited triplet state (T-1) showed that one C-Br bond moderately or significantly elongated. The elongated C-Br bond in the T-1 state was shown in the ortho-position for the 6-OH-PBDE congeners and the ortho-position or the meta-position for the 6-MeO-PBDE congeners. For the selected congeners, there were significant positive linear correlations between the number of bromine atoms (N-Br) and the calculated average atomic charge of bromine and maximum electronic absorbance wavelength (lambda(max)), and a negative linear correlation between the N-Br and average bond dissociation energy of C-O bonds (BDEC-O). The photoreactivities of the 6-OH-PBDEs and 6-MeO-PBDEs increased with an increase in the bromination degree with or without metal ions. The calculated average atomic charge of bromine and BDEC-O of the complexes with Mg2+/Zn2+ was higher and lower than those of the corresponding monomers, respectively, indicating that the presence of Mg2+/Zn2+ increased the photoreactivity (debromination and dissociation of C-O bond) of the selected 6-OH-PBDEs and 6-MeO-PBDEs. The effects of the coordination of Mg2+/Zn2+ may be overestimated due to their missing explicit solvation shell. These results provide vital insight into the photochemical properties of OH-PBDEs and MeO-PBDEs in water.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available