4.7 Article

Crayfish shell biochar modified with magnesium chloride and its effect on lead removal in aqueous solution

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 27, Issue 9, Pages 9582-9588

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-020-07631-9

Keywords

Lead removal; Crayfish shell; Biochar; Adsorption; Modification; Ion exchange

Ask authors/readers for more resources

In this study, crayfish shell was pyrolyzed at 600 degrees C to obtain an unmodified biochar (CS600). MgCl2 was used as a modifier to pretreat crayfish shell to produce a modified biochar (CS600-MgCl2) under the same pyrolysis conditions. The two biochars were characterized for physicochemical properties and evaluated for lead (Pb2+) sorption ability to determine the modification mechanism. Mono-element batch adsorption experiments were conducted to compare the sorption performances of CS600 and CS600-MgCl2 to Pb2+ in aqueous solutions. All the experiments were carried out at pH of 7. According to the Freundlich-Langmuir model, CS600-MgCl2 had a higher adsorption capacity (152.3 mg/g) than CS600 (134.3 mg/g). FTIR, SEM, XRD, BET, and ICP analyses were applied to inform the interpretation of the mechanism. CS600 was calcium-rich and mainly removed Pb2+ through the ion exchange mechanism by replacing Ca2+ in the biochar. The increased Pb2+ adsorption capacity of CS600-MgCl2 was mainly due to the enlarged specific surface area and the formation of Mg-3(OH)(5)Cl center dot 4H(2)O on the modified biochar. Findings of this study suggest that both CS600 and CS600-MgCl2 can be used to remove heavy metal ions from wastewater and MgCl2 can improve the sorption performance of biochar.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available