4.8 Article

Efficient Reductive Destruction of Perfluoroalkyl Substances under Self-Assembled Micelle Confinement

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 54, Issue 8, Pages 5178-5185

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.9b06599

Keywords

-

Funding

  1. National Key Research and Development Plans of Special Project for Site Soil [2018YFC1801002]
  2. National Natural Science Foundation of China [21777066]

Ask authors/readers for more resources

Recently, perfluoroalkyl substances (PFASs) have received great attention from both academia and the industry due to their persistence and health risks. Here, we developed a simple ternary self-assembled micelle composite, consisting of a photosensitive substance (indole acetic acid, IAA), cationic surfactant (cetyltrimethylammonium bromide), and contaminant (PFAS). Owing to the rapid hydrated electron transfer from IAA to the PFAS in the micelle, the PFAS degradation and defluorination were greatly enhanced even under ambient conditions. After 2.5 h UV irradiation, the perfluorooctanoic acid (PFOA) concentration decreased from 10 mg L-1 to similar to 60 ng L-1, which is below the drinking water health advisory level of the United States Environmental Protection Agency for the combined concentration of PFOA and perfluorooctane sulfonate (70 ng L-1). Meanwhile, the dissolved organic carbon content of the reaction solution was also reduced to similar to 3 mg L-1 due to the quick settlement and automatic separation of the micelle. Furthermore, the newly developed composite was also adaptable to a wide pH range (pH 4-8), attributing to the barrier created by the ternary micelle system. This novel self-assembly method is expected to directly treat industrial PFAS-containing wastewater or PFAS-enriched concentrates derived from adsorption processes. The conceptually new advanced reduction technique represents a major breakthrough toward PFAS rapid destruction and efficient usage of hydrated electrons and might also shed light on other environmental applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available