4.8 Article

Assessing NO2 Concentration and Model Uncertainty with High Spatiotemporal Resolution across the Contiguous United States Using Ensemble Model Averaging

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 54, Issue 3, Pages 1372-1384

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.9b03358

Keywords

-

Funding

  1. U.S. EPA [RD-834798, RD-835872, 83587201, CR-8346770]
  2. HEI grant [4953-RFA14-3/16-4]
  3. Beijing Key Laboratory of Indoor Air Quality Evaluation and Control
  4. FAS Division of Science, Research Computing Group at Harvard University

Ask authors/readers for more resources

NO2 is a combustion byproduct that has been associated with multiple adverse health outcomes. To assess NO2 levels with high accuracy, we propose the use of an ensemble model to integrate multiple machine learning algorithms, including neural network, random forest, and gradient boosting, with a variety of predictor variables, including chemical transport models. This NO2 model covers the entire contiguous U.S. with daily predictions on 1km-level grid cells from 2000 to 2016. The ensemble produced a cross-validated R-2 of 0.788 overall, a spatial R-2 of 0.844, and a temporal R-2 of 0.729. The relationship between daily monitored and predicted NO2 is almost linear. We also estimated the associated monthly uncertainty level for the predictions and address-specific NO2 levels. This NO2 estimation has a very high spatiotemporal resolution and allows the examination of the health effects of NO2 in unmonitored areas. We found the highest NO2 levels along highways and in cities. We also observed that nationwide NO2 levels declined in early years and stagnated after 2007, in contrast to the trend at monitoring sites in urban areas, where the decline continued. Our research indicates that the integration of different predictor variables and fitting algorithms can achieve an improved air pollution modeling framework.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available